Allgemein, Mathematik

Was aus dem Königsberger Brückenproblem wurde

… und wie die Eulersche Charakteristik gefunden wurde.

Erinnert ihr euch an das Königsberger Brückenproblem und die Anfänge der Graphentheorie? Wir hätten es nicht mit Leonhard Euler zu tun gehabt, wenn er das Thema mit der Feststellung beendet hätte, dass es für Königsberg keinen sogenannten Eulerkreis gibt. Er erforschte und entwickelte die Graphentheorie weiter und begründete damit auch gleich noch die Topologie.

Lasst uns ein kleines Experiment probieren: Nehmt einen Stift, ein Blatt Papier und malt ein paar Kringel. Die Endpunkte müssen verbunden sein und die Linien sollten sich ein paar Mal überschneiden. Nun zählt die Schnittpunkte der Linien, die Linienabschnitte zwischen den Schnittpunkten und die eingeschlossenen Flächen. Nun rechnet mal E – V + 1 aus, wobei E die Anzahl der Linienabschnitte ist, V die Anzahl der Schnittpunkte und F sei die Anzahl der Innenflächen. Ich rate mal: E – V + 1 = F?!

In diesem Beispiel ist E = 8, V = 4 und F = 5. Damit gilt also auch E – V + 1 = 8 – 4 + 1 = 5 = F.

 

Warte, hier geht es weiter! …