Mathematik, Was ist...?

Was ist… Topologie?

Bereits ein paar Mal habe ich die Topologie erwähnt und nie so wirklich erklärt, worum es sich dabei handelt. Das möchte ich heute ändern und euch zumindest eine Idee davon geben, womit sich Topologen beschäftigen und wie sie die Welt sehen.

Ähnlich wie in der Geometrie beschäftigt man sich in der Topologie mit Formen. Anders als Geometer interessieren sich Topologen aber nicht für konkrete Größen, Längen oder Winkelverhältnisse. Auch Unterscheidungen, auf welchen Oberflächen sich die Formen befinden, sind für topologische Betrachtungen komplett uninteressant.

Ein topologischer Quasikreis – Für einen Topologen ist das hier quasi ein Kreis. Klingt vielleicht eigenartig, ist aber so…

Warte, hier geht es weiter! …

Werbeanzeigen
Allgemein, Mathematik

Was aus dem Königsberger Brückenproblem wurde

… und wie die Eulersche Charakteristik gefunden wurde.

Erinnert ihr euch an das Königsberger Brückenproblem und die Anfänge der Graphentheorie? Wir hätten es nicht mit Leonhard Euler zu tun gehabt, wenn er das Thema mit der Feststellung beendet hätte, dass es für Königsberg keinen sogenannten Eulerkreis gibt. Er erforschte und entwickelte die Graphentheorie weiter und begründete damit auch gleich noch die Topologie.

Lasst uns ein kleines Experiment probieren: Nehmt einen Stift, ein Blatt Papier und malt ein paar Kringel. Die Endpunkte müssen verbunden sein und die Linien sollten sich ein paar Mal überschneiden. Nun zählt die Schnittpunkte der Linien, die Linienabschnitte zwischen den Schnittpunkten und die eingeschlossenen Flächen. Nun rechnet mal E – V + 1 aus, wobei E die Anzahl der Linienabschnitte ist, V die Anzahl der Schnittpunkte und F sei die Anzahl der Innenflächen. Ich rate mal: E – V + 1 = F?!

In diesem Beispiel ist E = 8, V = 4 und F = 5. Damit gilt also auch E – V + 1 = 8 – 4 + 1 = 5 = F.

 

Warte, hier geht es weiter! …